Google+
Iboga Shop
Twitter
LinkedIn
YouTube
RSS
Facebook

Ibogaine – Pharmacodynamics

Among recent proposals for ibogaine mechanisms of action is activation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the ventral tegmental area (VTA) of the brain. The work has principally been accomplished in preclinical ethanol research, where 40 mg/kg of ibogaine caused increases of RNA expression of GDNF in keeping with reduction of ethanol intake in the rat, absent neurotoxicity or cell death.[34]

Ibogaine is a noncompetitive antagonist at α3β4 nicotinic receptors, binding with moderate affinity.[35] Several other α3β4 antagonists are known, and some of these, such as bupropion (Wellbutrin or Zyban), and mecamylamine, have been used for treating nicotine addiction. This α3β4 antagonism correlates quite well with the observed effect of interrupting addiction. Co-administration of ibogaine with other α3β4 antagonists such as 18-MC, dextromethorphan or mecamylamine had a stronger anti-addictive effect than when it was administered alone.[36] Since α3β4 channels and NMDA channels are related to each other and their binding sites within the lumen bind a range of same ligands (e.g. DXM, PCP),[37] some older sources suggested that ibogaine’s anti-addictive properties may be (partly) due to it being an NMDA receptor antagonist.[38] However, ligands, like 18-MC, selective for α3β4- vs. NMDA-channels showed no drop-off in activity.

It is suspected that ibogaine’s actions on the opioid and glutamatergic systems are also involved in its anti-addictive effects. Persons treated with ibogaine report a cessation of opioid withdrawal signs generally within an hour of administration.

Ibogaine is a weak 5HT2A receptor agonist, and although it is unclear how significant this action is for the anti-addictive effects of ibogaine, it is likely to be important for the hallucinogenic effects. Ibogaine is also a sigma2 receptor agonist.

Buy Ibogaine from Iboga World

Ibogaine – Formulations

In Bwiti religious ceremonies, the rootbark is pulverized and swallowed in large amounts to produce intense psychoactive effects. In Africa, iboga rootbark is sometimes chewed, which releases small amounts of ibogaine to produce a stimulant effect. Ibogaine is also available in a total alkaloid extract of the Tabernanthe iboga plant, which also contains all the other iboga alkaloids and thus has only about one-fifth the potency by weight as standardized ibogaine hydrochloride.

Total alkaloid extracts of T. iboga are often loosely called “Indra extract”. However, that name actually refers to a particular stock of total alkaloid extract produced in Europe in 1981. The fate of that original stock (as well as its original quality) is unknown.

Currently, pure crystalline ibogaine hydrochloride is the most standardized formulation. It is typically produced by the semi-synthesis from voacangine in commercial laboratories. Ibogaine has two separate chiral centers which means that there a four different stereoisomers of ibogaine. These four isomers are difficult to resolve.

A synthetic derivative of ibogaine, 18-methoxycoronaridine (18-MC), is a selective α3β4 antagonist that was developed collaboratively by the neurologist Stanley D. Glick (Albany) and the chemist Martin E. Kuehne (Vermont). This discovery was stimulated by earlier studies on other naturally occurring analogues of ibogaine such as coronaridine and voacangine that showed these compounds also have anti-addictive properties.

Buy Ibogaine from Iboga World